Voronoi-cell finite difference method for accurate electronic structure calculation of polyatomic molecules on unstructured grids
نویسنده
چکیده
We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist of spherical atomic grids. It provides accurate and efficient solutions for the Schrödinger equation and the Poisson equation with the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples, we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the method to the density-functional theory for many-electron polyatomic molecules.
منابع مشابه
New Development of Theoretical and Computational Methods for Probing Strong-Field Multiphoton Processes
The study of the strong-field multiphoton processes is a subject of much current significance in physics and chemistry. Recent progress of laser technology has triggered a burst of attosecond science where the electron dynamics plays a vital role in underlying physics. The nonlinear strong-field phenomena, such as multiphoton ionization, multiphoton resonance, high-order harmonic generation, et...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملA Mass Conservative Method for Numerical Modeling of Axisymmetric flow
In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...
متن کاملTrajectory calculations for spherical geodesic grids in Cartesian space
This paper shows how to obtain accurate and efficient trajectory calculations for spherical geodesic grids in Cartesian space. Determination of the departure points is essential to characteristic-based methods that trace the value of a function to the foot of the characteristics and then either integrate or interpolate at this location. In this paper, the departure points are all computed in re...
متن کاملNumerical Computation of Discrete Differential Operators on Non-Uniform Grids
In this paper, we explore the numerical approximation of discrete differential operators on nonuniform grids. The Voronoi cell and the notion of natural neighbors are used to approximate the Laplacian and the gradient operator on irregular grids. The underlying weight measure used in the numerical computations is the Laplace weight function, which has been previously adopted in meshless Galerki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011